Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling.

نویسنده

  • P Dimitrakopoulos
چکیده

Despite research spanning several decades, the exact value of the shear modulus Gs of the erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based on micropipette aspirations, ektacytometry systems and other flow chambers, and optical tweezers, as well as application of several models, have found different average values in the range 2-10μN/m. Our study shows that different methodologies have predicted the correct shear modulus for the specific membrane modeling employed, i.e., the variation in the shear modulus determination results from the specific membrane modeling. Available experimental findings from ektacytometry systems and optical tweezers suggest that the dynamics of the erythrocyte membrane is strain hardening at both moderate and large deformations. Thus the erythrocyte shear modulus cannot be determined accurately using strain-softening models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models (such as the Yeoh law), which overestimate the erythrocyte shear modulus. According to our analysis, the only available strain-hardening constitutive law, the Skalak et al. law, is able to match well both deformation-shear rate data from ektacytometry and force-extension data from optical tweezers at moderate and large strains, using an average value of the shear modulus of Gs=2.4-2.75μN/m, i.e., very close to that found in the linear regime of deformations via force-extension data from optical tweezers, Gs=2.5±0.4μN/m. In addition, our analysis suggests that a standard deviation in Gs of 0.4-0.5μN/m (owing to the inherent differences between erythrocytes within a large population) describes well the findings from optical tweezers at small and large strains as well as from micropipette aspirations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation of Immiscibility Gap in Polymer Solution Containing Alkane and Effects on Providing the Membrane

In oredr to reduce costs and save time for the membrane manufacturing process, it is necessary to improve the quality of membranes by modeling usage. In this study, Flory Huggins model was used to predict quaternary-system containing polyether sulfone, N-Methyl-2-pyrrolidone, water and used alkanes as an additive. Due to the solubility parameters and molar alkane volumes, the interaction parame...

متن کامل

Combined Three Mechanisms Models for Membrane Fouling during Microfiltration

Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the success...

متن کامل

Design and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane

This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...

متن کامل

Impact of Measuring Devices and Data Analysis on the Determination of Gas Membrane Properties

The time-lag method, using a gas permeation experiment, is currently the most popular method for determining the membrane properties: diffusivity coefcient and permeability coefcient, and from which the solubility coefcient can be calculated. In this investigation, the impact of systematic, random (noise), resolution and extrapolation errors associated with gas permeatio...

متن کامل

Response Determination of a Beam with Moderately Large Deflection Under Transverse Dynamic Load Using First Order Shear Deformation Theory

In the presented paper, the governing equations of a vibratory beam with moderately large deflection are derived using the first order shear deformation theory. The beam is homogenous, isotropic and it is subjected to the dynamic transverse and axial loads. The kinematic of the problem is according to the Von-Karman strain-displacement relations and the Hook's law is used as the constitutive eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012